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Terminology

Sparse matrix-matrix multiplication or sparse matrix multiplication?

sparse matrix multiplication can be confused with sparse matrix times
dense vector (SpMV)

sparse matrix-matrix multiplication is a mouthful

SpMM or SpGEMM?

SpMM can be confused with sparse matrix times dense matrix
(typically sparse matrix times multiple dense vectors)

In any case, we’re talking about sparse matrix times sparse matrix in
this mini, and I’ll use SpGEMM unless there are (violent) objections



Schedule of Talks: Morning Session (MS5)

10:15 Hypergraph Partitioning for SpGEMM

Grey Ballard, Sandia National Labs

10:45 Exploiting Sparsity in Parallel SpGEMM

Cevdet Aykanat, Bilkent University

11:15 SpGEMM and Its Use in Parallel Graph Algorithms

Ariful Azad, Lawrence Berkeley National Lab

11:45 The Input/Output Complexity of SpGEMM

Morten Stöckel, IT University of Copenhagen



Schedule of Talks: Afternoon Session (MS12)

3:00 Analyzing SpGEMM on GPU Architectures

Steven Dalton, NVIDIA

3:30 A Framework for SpGEMM on GPUs and Heterogeneous Processors

Weifeng Liu, University of Copenhagen

4:00 The Distributed Block-Compressed Sparse Row Library: Large Scale
and GPU Accelerated SpGEMM

Alfio Lazzaro, ETH Zürich

4:30 Strong Scaling and Stability: SpAMM Acceleration for the Matrix
Square Root Inverse and the Heavyside Function

Matt Challecombe, Los Alamos National Lab
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Summary

Parallel SpGEMM is an irregular computation whose performance
is communication bound

We have a useful classification of parallel SpGEMM algorithms based
on a geometric interpretation

Hypergraph partitioning can relate parallel algorithms to their
communication costs

Using hypergraphs, we obtain theoretical communication lower
bounds and practical algorithmic insight for parallel SpGEMM

Grey Ballard 1



Sparse matrix-matrix multiplication (SpGEMM)
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Geometric view of the computation
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Parallel algorithms partition the nonzero multiplies across processors
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Classification of Algorithms

1D Algorithms: parallelization over only 1 dimension of cube

Only 3 types: row-wise, column-wise, or outer-product

2D Algorithms: parallelization over 2 dimensions of cube

include Sparse SUMMA and Sparse Cannon
can be classified into 3 subclasses

3D Algorithms: parallelization over all 3 dimensions of cube

most general/flexible class

Grey Ballard 4



1D Algorithms

Row-Wise Algorithm: A(i , :) · B = C (i , :)
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1D Algorithms

Column-Wise Algorithm: A · B(:, j) = C (:, j)

∗ ∗ ∗
∗
∗

∗ ∗
•

∗
∗ ∗ ∗
∗
∗ ∗

=

∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗

∗ ∗ ∗

∗
∗

∗ ∗

A

∗ ∗
∗
∗
∗
∗

∗
B

∗

∗
∗

∗

∗
∗

∗
∗

∗

C

Row-Wise

∗ ∗ ∗

∗
∗

∗ ∗

A

∗ ∗
∗
∗
∗
∗

∗
B
∗

∗
∗

∗

∗
∗

∗
∗

∗

C

Column-Wise

∗ ∗ ∗

∗
∗

∗ ∗

A

∗ ∗
∗
∗
∗
∗

∗
B

∗

∗
∗

∗

∗
∗

∗
∗

∗

C

Grey Ballard 5



1D Algorithms

Outer-Product Algorithm: A(:, k) · B(k , :) = C (k)

∗ ∗ ∗
∗
∗

∗ ∗
•

∗
∗ ∗ ∗
∗
∗ ∗

=

∗ ∗

∗ ∗

∗ ∗ ∗

∗
∗

∗ ∗

A

∗ ∗
∗
∗
∗
∗

∗
B

∗

∗
∗

∗

∗
∗

∗
∗

∗

C

Row-Wise

∗ ∗ ∗

∗
∗

∗ ∗

A

∗ ∗
∗
∗
∗
∗

∗
B
∗

∗
∗

∗

∗
∗

∗
∗

∗

C

Column-Wise

∗ ∗ ∗

∗
∗

∗ ∗

A

∗ ∗
∗
∗
∗
∗

∗
B

∗

∗
∗

∗

∗
∗

∗
∗

∗

C

Outer-Product

Grey Ballard 5



2D Algorithms

Monochrome-C Algorithm: A(I , :) · B(:, J) = C (I , J)
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2D Algorithms

Monochrome-B Algorithm: A(:,K ) · B(K , J) = C (:, J)
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2D Algorithms

Monochrome-A Algorithm: A(I ,K ) · B(K , :) = C (I , :)
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3D Algorithms
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3D Algorithms
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3D Algorithms
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Communication hypergraphs and hypergraph partitioning

Hypergraphs consist of vertices and nets, or sets of vertices (of any size)

for undirected graphs, nets are sets of exactly two vertices

For our purposes:

vertices correspond to computation
nets correspond to data

p1 p2
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SpGEMM’s “fine-grained” hypergraph
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Grey Ballard 8



SpGEMM’s “fine-grained” hypergraph

Vertices correspond to computation (nonzero multiplication)

Nets correspond to data (nonzero entries)

Grey Ballard 8



SpGEMM’s “fine-grained” hypergraph

Vertices correspond to computation (nonzero multiplication)
Nets correspond to data (nonzero entries)
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Theoretical result

Theorem ([BDKS15])

The communication cost of SpGEMM using p processors is at least

min
{V1,...,Vp}∈P

max
i∈[p]

{# cut nets with vertices in Vi} ,

where P is the set of all sufficiently load-balanced partitions.

Proof.

The hypergraph models communication perfectly.

Grey Ballard 9



Practical result for application-specific algorithm selection

=A
c
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Grey Ballard 10

Hypergraph partitioning software can estimate lower bound

Key application of SpGEMM: algebraic multigrid triple product

compute Ac = PTAf P using two calls to SpGEMM
we analyze a model problem (off-line)



Practical result for application-specific algorithm selection

Af · P PT · (Af P)
N p row-wise fine-grained row-wise outer fine-grained

19,683 27 5,528 4,649 10,712 2,072 964
91,125 125 5,528 5,823 10,712 2,072 1,324

250,047 343 5,528 6,160 10,712 2,072 1,444
531,441 729 5,528 6,914 10,712 2,072 1,491
970,299 1,331 5,528 6,679 10,712 2,072 1,548

Table: Comparison of 1D algorithms using geometric partitions [BSH15] with
best hypergraph partition found by PaToH [ÇA99]

Grey Ballard 10

Hypergraph partitioning software can estimate lower bound

Key application of SpGEMM: algebraic multigrid triple product

compute Ac = PTAf P using two calls to SpGEMM
we analyze a model problem (off-line)



Restricted hypergraph models

Fine-grained model for SpGEMM is large

# of vertices: # of scalar multiplies

# of nets: # of nonzeros in inputs and output

much more expensive to partition than to perform SpGEMM

likely effective only as offline tool for classes of algorithms

We can restrict the valid hypergraph partitions to classes of algorithms,
significantly reducing the size of the hypergraph

1D: row-wise, column-wise, or outer-product hypergraphs

# of vertices/nets depends on matrix dimensions, not nnz

2D: monochrome-A, -B, or -C hypergraphs

# nets depends on nnz(A), nnz(B), or nnz(C )

Grey Ballard 11
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Summary

Parallel SpGEMM is an irregular computation whose performance
is communication bound

We have a useful classification of parallel SpGEMM algorithms based
on a geometric interpretation

Hypergraph partitioning can relate parallel algorithms to their
communication costs

Using hypergraphs, we obtain theoretical communication lower
bounds and practical algorithmic insight for parallel SpGEMM
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